VARIATIONAL PROBLEMS OF GAS DYNAMICS OF NONEQUILIBRIUM AND EQUILIBRIUM FLOWS

(VARIATSIONXE ZADACHI GAZOVOI DINAMCII NERAWNOVBSNYKH I RAWNOVRSNYKH TEOHENII)

PMM Vol.28, № 2, 1964, pp.285-295
A.N. KRAIKO
(Moscow)
(Received December 23, 1963)

The problem of shape determination is examined for two-dimensional and axisymmetric bodies with minimum drag and for nozzles with maximum thrust under conditions of steady supersonic flow of inviscid and thermally nonconducting gas in the presence and in the absence of irreversible processes of the type of chemical reactions proceeding at finite rates. It assumed that the region of influence of the part of the contour which is to be determined is bounded by characteristics and does not contain shock waves. The boundaries with respect to the body contour are arbitrary; the dimensions of the body, the area of the surface, the volume etc. can be prescribed.

In the present study parameters on the surface of the body determined by a system of non-linear equations in partial differentials, appear as functionals of a form which is unknown in advance. In problems solved up to recent time [1 to 9] this difficulty is overcome by a transformation to a control contour as suggested by Nikol'skil [10]. However, this transformation is applicable when only the dimensions of the body-are prescribed and when irreversible processes are not present.

A method for solution of problems which do not permit such a transformaticn was proposed recently by Guderley and Armitage [11] and independently by Sirazetdinov [12]. Application of this method to problems of the present study permits to obtain the necessary conditions of an extremum which serves as a basis for the construction of optinum contours. Furthermore, it is demonstrated that in a number of cases it is necessary to permit discontinuities in Lagrange's multipliers for continuvus parameters of flow. It is shown that these discontinuities can occur along characteristics and streamines. Relationships for discontinuities are obtained.

1. Let x and y be orthogonal coordinates; in the axisymmetric cases the x-axis is oriented along the axis ol symmetry from left to right. A: indepenaent variables we take V and the flow function φ, which is rierermined by Equat*on

$$
d \psi=y^{\nu} \rho(-v d x+u d y)
$$

where ρ is density, i, v are projections of velocities on the x and y-axes; $v=0$ and 1 for the two-dimensional and axisymmetric case respective1y. With the adopted variables the flow is described by Equations

$$
\begin{align*}
L_{1} \equiv \frac{\partial u}{\partial y}-\frac{\partial y^{v} p}{\partial \psi}=0 & \text { (of motion) } \tag{1.1}\\
L_{2} \equiv \frac{\partial\left(y^{v} \rho v\right)^{-1}}{\partial y}+\frac{\partial(u / v)}{\partial \psi}=0 & \text { (or continulty) } \tag{1.2}\\
L_{3} \equiv \rho u \frac{\partial u}{\partial y}+\rho v \frac{\partial v}{\partial y}+\frac{\partial p}{\partial y}=0 & \text { (of motion) } \tag{1.3}\\
L_{4} \equiv \frac{\partial x}{\partial y}-\frac{u}{v}=0 & \text { (of streamilnes) } \tag{1.4}\\
\frac{u^{2}+v^{2}}{2}+h=H(\psi) & \text { (of energy) } \tag{1.5}
\end{align*}
$$

Here p is the pressure, h the specific enthalpy, H total enthalpy which is a known function of ψ. Let the thermodynamic state of the gas be defined by the pressure, by the temperature I of approaching degrees of freedom of some component of gas and by n parameters q_{1} connected with irreversible processes $(i=1, \ldots, n)$. These parameters can be concentrations of components, energies of various degrees of freedom etc. Let us introduce an n-dimensional vector $q=\left(q_{2}, \ldots, q_{n}\right)$. Functions of the type $f\left(q_{1}, \ldots, q_{n}\right)$ will be written in the form $f(q)$. By virtue of the above mentioned, Equation of state and Expression for h have the form

$$
\begin{equation*}
\rho=\rho(p, T, \mathbf{q}, \psi), \quad h=h(p, T, \mathbf{q}, \psi) \tag{1.6}
\end{equation*}
$$

The change in parameters \mathbf{q} is described by Equations

$$
\begin{equation*}
\mathbf{L} \equiv \frac{\partial \mathbf{q}}{\partial \eta}-\frac{\omega(p, T, \mathbf{q}, \psi)}{v}=0 \tag{1.7}
\end{equation*}
$$

Where L and w are vectors with components L_{i} and w_{1}; w_{i} is the vate of change of parameter q_{1}. The right-hand members of (1.6) and w_{1} are known functions of p, T, Q and ψ. The presence of ψ shows that different gases can flow along different streamlines.

We introduce the sound velocity o through Equation

$$
\begin{equation*}
c^{-2}=\rho_{p}+\frac{\rho_{T}}{h_{T}}\left(\frac{1}{\rho}-h_{p}\right) \tag{1.8}
\end{equation*}
$$

Here

$$
\rho_{p}=\left(\frac{\partial p}{\partial p}\right)_{T, \mathbf{q}, \psi}, \quad \rho_{T}=\left(\frac{\partial p}{\partial T}\right)_{p, \mathbf{q}, \psi}, \quad h_{p}=\left(\frac{\partial h}{\partial p}\right)_{T, \mathbf{q}, \psi}, \quad h_{T}=\left(\frac{\partial h}{\partial T}\right)_{2, \mathbf{q},:}
$$

Equations (1.1) to (1.7) form a complete system. For $u^{2}+v^{2}-w^{2}>c^{2}$ this system has three families of real characteristics. These streamines with $\psi=$ const for which Equations (1.3) to (1.5) are satisfied, and Mach lines for which

$$
\begin{align*}
& d x \mp \frac{u \sqrt{w^{2}-c^{2}} \mp c v}{y^{*} p c w^{2}} d \psi=0 \tag{1.9}\\
& d y+\frac{v \sqrt{w^{2}-c^{2}} \pm c u}{y^{\prime} p c w^{2}} d \psi=0 \tag{1.10}
\end{align*}
$$

$$
\begin{equation*}
u^{2} d \frac{v}{u} \pm \frac{\sqrt{w^{2}-c^{2}}}{\rho c} d p+\left\{\frac{v v}{y}+\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{T}}\right) \omega\right\} \frac{d \psi}{y^{v} \rho}=0 \tag{1.11}
\end{equation*}
$$

Here, vectors are

$$
\begin{gathered}
h=\left(h_{q_{1}}, \ldots, h_{q_{n}}\right), \quad \rho=\left(\rho_{q_{1}}, \ldots, \rho_{q_{n}}\right) \\
h_{q_{i}}=\left(\frac{\partial h}{\partial q_{i}}\right)_{p, T, \psi, q_{j} \neq q_{i}}, \quad \rho_{q_{i}}=\left(\frac{\partial \rho}{\partial q_{i}}\right)_{p, T, \psi, q_{j} \neq q_{i}}
\end{gathered}
$$

The upper index refers to characteristics of the first family.
All variables are dimensionless. The reduction to dimensionless form is achieved by dividing x and y by 1 , the velocities by w_{∞}, the densities by ρ_{∞}, pressures by $\rho_{\infty} \mu_{w_{\infty}}{ }^{3}$, temperatures by $R^{-1} \omega_{\infty}^{2}$, enthalpies by w_{∞}^{2} and by $l(\nu+1) \rho_{\infty} w_{\infty}$, where $1, w_{\infty}$ and ρ_{∞} are quantities with dimensions of length, velocity and density, R is the gas constant of certain gas. The parameters q_{i} are reduced to nondimensional form by taking into account their various dimensions.
2. In the problem under consideration it is required to find the necessary conditions determining the form of the contour a_{g} which insures a minimum of wave drag (Fig. 1) or a maximum of thrust (Fig. 2) for a given

Fig. 1 flow to the left of the characteristic a_{c},

In addition to the position of point a, the length of the body X, the area of the side surface, the volume etc. can be prescribed.

Abstract

The desired contour may consist of regions of two-sided and outer extremums. The regions are determined by the statement of the problem and the limits of applicability of utilized equations. For fixed length this will be the section $b g$ of the straight line $x=X$, where $\delta x \leqslant 0$ 1s permissible. For a given cross-sectional dimension Y the region of the outer extremum will be a section of the straight line $V=Y$. In the

 axisymmetric case and in the case of a symmetrical flat body such a region coincides with a section of the axis of symmetry. To the limit of applicability of Equations (1.1) to (1.7) without taking into account shock wave relations, there corresponds a section of the curve of maximum compression [6] such that the shock wave which is formed by the approaching flow starts at the boundary of the region of influence for the desired area of the body.The direction of the prescribed contour to the left of a and the direction of the contour which is determined from the solution of the variational problem are different in the general case. At a, therefore, passage of flow over a convex corner takes place (the case where the flow over the contour ad results in shock wave formation at a is not considered here). On the basis of technical consideration a discontinuity in the vicinity of a can be forbidden, for example, due to boundaries on $x^{\prime \prime}=d^{2} x / a y^{2}$. This will also give some part of the outer extremum.

Fig. 2

Among the enumerated regions of the outer extremum we will examine only
the first and the last and we will investigate only the case where the parameters are constant in the vicinity of $b g$ and do not depend on the shape of the contour a_{g}. With an accuracy to an insignificant factor the wave drag or thrust are given by

$$
\chi=\int_{a}^{b} y^{v} p d y+\int_{b}^{g} y^{v} p_{T} d y
$$

where b is the connecting point of the region with a two-sided extremum and the section $b g, p_{T}=$ const is pressure on the $b g$; points b and a may coincide.

We have isoperimetric conditions (taking into consideration that $u=v x^{\prime}$) in the form
$K^{j}=\int_{a}^{b} f^{j}\left(y, x, v, p, T, \mathbf{q}, x^{\prime}\right) d y+\int_{b}^{g} f^{m j}\left(y, x, x^{\prime}\right) d y \quad(j=1, \ldots, m)$
Where K^{3} are given constants, f^{3} and f^{01} are known functions, m is number of isoperimetric conditions; prime designates derivatives $(\partial / \partial y)_{\psi=\psi_{a}}$; indices a, b, \ldots are given to parameters at corresponding points.
3. We utilize the methods of Guderley, Armitage and Sirazetdinov [11 and 12]. On the surface of the body the flow parameters are determined by Equations (1.5) and (1.6) and by differential Equations (1.3), (1.4) and (1.7) along a_{b} and (1.1) to (1.3) and (1.7) in the region of influence G, bounded by characteristics $a c$ and $o b$ and by contour $a b$. We construct the functionals

$$
\begin{gathered}
I=\int_{a}^{b}\left(\Phi+\alpha L_{3}+\beta L_{\mathbf{4}}+\gamma \mathbf{L}\right) d y+\int_{b}^{g} F d y+ \\
+\int_{G}\left(\mu_{1} L_{1}+\mu_{2} L_{2}+\mu_{3} L_{3}+\mathbf{Q L}\right) d y d \psi \\
\Phi=\Phi\left(y, x, v, p, T, \mathbf{q}, x^{\prime}, \lambda\right)=y^{v} p+\sum_{j=1}^{m} \lambda^{j} f^{j}\left(y, x, v, p, T, \mathbf{q}, x^{\prime}\right) \\
F=F\left(y, x, x^{\prime}, \lambda\right)=y^{v} p_{T}+\sum_{j=1}^{m} \lambda^{j} f^{0 j}\left(y, x, x^{\prime}\right)
\end{gathered}
$$

Here $\lambda^{2}, \ldots, \lambda^{\prime}$ are constants, $\quad \alpha(y), \beta(y), \gamma(y), \mu_{1}(y, \psi), \mu_{2}(y, \psi)$, $\mu_{3}(y, \psi), Q(y, \psi)$ are variable Lagranges multipliers, γ and Q are $n-d i-$ mensional vectors. By virtue of Equations (1.1) to (1.4) and (1.7) and conditions (2.1), variations of I and x coincide for permissible variations.

We shall find the first variation of I in the absence of limitations with respect to $x^{\prime \prime}$, i,e. for the case where a discontinuity in the contour is permitted (Fig. 1 and 2).

By virtue of (1.5) and (1.6)

$$
\delta T=-\frac{u}{h_{T}} \delta u-\frac{v}{h_{T}} \delta v-\frac{h_{p}}{h_{T}} \delta p-\frac{\mathbf{h}}{h_{T}} \delta q
$$

Therefore if $\zeta=\zeta(p, T, \mathbf{q}, \psi)$, then

$$
\delta \zeta=-\frac{\zeta_{T} u}{h_{T}} \delta u-\frac{\zeta_{T} v}{h_{T}} \delta v+\left(\zeta_{p}-\frac{\zeta_{T} h_{p}}{h_{T}}\right) \delta p+\left(\zeta-\frac{\zeta_{T} \mathbf{h}}{h_{T}}\right) \delta q
$$

Here

$$
\zeta \equiv \zeta_{q}=\left(\zeta_{q_{1}}, \ldots, \zeta_{q_{n}}\right)
$$

$$
\zeta_{p}=\left(\frac{\partial \zeta}{\partial p}\right)_{T, \mathbf{q}, \psi} \quad \zeta_{T}=\left(\frac{\partial \zeta}{\partial T}\right)_{p, q, \psi}, \quad \zeta_{q_{i}}=\left(\frac{\partial \zeta}{\partial q_{i}}\right)_{p, T, q_{i} \neq q_{i}, \psi}
$$

In order to elininate variations under the integral signs which appear in the process of variation due to derivatives, we utilize the formula for integration by parts and a relationship which is a consequence of Green's. formula

$$
\iint_{G}\left(N \frac{\partial \delta \xi}{\partial y}+M \frac{\partial \delta \xi}{\partial \psi}\right) d y d \psi=-\iint_{G}\left(\frac{\partial N}{\partial y}+\frac{\partial M}{\partial \psi}\right) \delta \xi \cdot d y d \psi+\oint\left(M \frac{d \psi}{d y}-N\right) \delta \xi d y
$$

where the contour integral is taken along the unvaried boundary of the region of influence in the plane $\psi \psi$. Variation of double integral, which is related to a change in boundary G, is not present because the expression under the integral is equal to zero. However, variations of integral along $a g$, which are connected with a change of coordinates b and g are diferent from zero. Increments in coordinates of these points will de designated by Δy and Δx. With an accuracy to small terms of higher order $\delta x=\Delta x+x^{\prime} \Delta y$.

Let $a d$ be the closing characteristic of an expansion wave fan. Small changes of the contour ag have no influence on the flow in acd. Therefore here, including ao and od variations of parameters are equal to zero. Further, $8 x_{a}$ disappears because a is given, the variation $8 q_{0}$ disappears by virtue of Equations (1.7); finally, oun, ove and sp, are connected with the equality $\left(p u b u+p v \delta v+\delta_{p}\right)$) $=0$. Tre latter follows from Equation (1.3), which at a has the form pudu $+p v d u+d p=0$ and the fact that here $u=u(p)$ and $v=v(p)$ and consequentiy $s u=(d u / d p) s_{p}$ and $d v=(d v / d p) \delta p$.

By taking into account what was mentioned above and by utilizing (1.3), (1.7) and (1.8) we find

$$
\begin{align*}
& \delta \chi=\delta I=\left\{\Phi_{-}-F_{+}-\left(\Phi_{x^{\prime}}+\beta\right)_{-} x_{-}{ }^{\prime}+F_{x^{\prime}+} x_{+}{ }^{\prime}\right\}_{b} \Delta y_{b}{ }^{\prime}+\left(\Phi_{x^{\prime}-}+\beta_{-}-F_{x^{\prime}+}\right)_{b} \Delta x_{b}+ \\
& +\{\alpha(\rho u \delta u+\rho v \delta v+\delta p)+\boldsymbol{\gamma} \delta \mathbf{q}\}_{b}+F_{g} \Delta y_{g}+ \\
& +\int_{a}^{b}\left(U^{\circ} \delta x+U^{\mathfrak{l}} \delta u+U^{2} \delta v+U^{3} \delta p+\mathbf{U} \delta \mathbf{q}\right) d y+\int_{b}^{\mathrm{g}}\left\{F_{x}-\left(F_{\left.x^{\prime}\right)^{\prime}}\right\} \delta x d y+\right. \\
& +\int_{i}^{d}\left(V^{1} \delta u+V^{2} \delta v+V^{3} \delta p+\mathbf{V} \delta q\right) d y+ \\
& +\iint_{G_{0}}\left(W^{\perp} \delta u+W^{2} \delta v+W^{3} \delta p+\mathbf{W} \delta \mathbf{q}\right) d y d \psi \tag{3.1}\\
& \left(\Phi_{x^{\prime}}=\left(\partial \Phi / \partial x^{\prime}\right)_{y, x, v, p, T, \Psi, \lambda}, \quad F_{x^{\prime}}=\left(\partial F / \partial x^{\prime}\right)_{y, x, \lambda}\right)
\end{align*}
$$

where G° is the region $a d b$; minus and plus subscripts are attached to parameters at point b before and after the discontinuity, $U^{t}, V^{t}, W^{1}, ~ V$,
V and W are known functions of flow parameters and Lagrange's multipliers.
4. Let us examine various terms of Expression (3.1). For any contour a_{θ} some of them can be reduced to zero by a special choice of Lagrange's multipliers. We will determine $\mu_{1}, \mu_{2}, \mu_{3}, Q$ is obtained from Equations $W^{2}=0, W^{2}=0, W^{\beta}=0, W=0$, which we will represent in the form

$$
\begin{align*}
& W^{2}-\frac{v}{u} W^{1} \equiv \frac{v}{u} \frac{\partial \mu_{1}}{\partial y}+\frac{1}{y^{v} \rho v^{2}} \frac{\partial \mu_{2}}{\partial y}+\frac{w^{2}}{u v^{2}} \frac{\partial \mu_{2}}{\partial \varphi}+\frac{\mathrm{Q} \omega}{v^{2}}=0 \tag{4.1}\\
& W^{2}-\rho v W^{3}=-y^{v} \rho v \frac{\partial \mu_{1}}{\partial \psi}+\frac{c^{2}-v^{2}}{y^{\nu} \rho v^{2} c^{2}} \frac{\partial \mu_{2}}{\partial y}+\frac{u}{v^{2}} \frac{\partial \mu_{z}}{\partial \psi}-\mu_{3}\left(\rho-\frac{\rho_{T} h}{h_{T}}\right) \omega+ \\
& +\mathbf{Q}\left\{\rho\left(\omega_{p}-\frac{\omega_{T} h_{p}}{h_{T}}\right)+\frac{\omega}{v^{2}}+\frac{\omega_{T}}{h_{T}}\right\}=0 \tag{4.2}\\
& -W^{1}-\frac{v}{u} W^{2} \equiv \frac{\partial \mu_{1}}{\partial y}-\frac{1}{y^{v} u v}\left(\frac{1}{\rho}-\varepsilon w^{2}\right) \frac{\partial \mu_{2}}{\partial y}+\frac{\mathrm{p} w^{2}}{u} \frac{\partial \mu_{3}}{\partial y}+\quad\left(\varepsilon=\frac{\rho_{T}}{\rho^{2} h_{T}}\right) \\
& +\frac{\mu_{3} \rho w^{2}}{u}\left\{\left(\frac{1}{\rho c^{2}}-\varepsilon\right) \frac{\partial p}{\partial y}+\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{T}}\right) \frac{\omega}{\rho v}\right\}-\frac{Q}{u^{v}}\left(\omega+\frac{\omega_{T} w^{\mathrm{Q}}}{h_{T}}\right)=0 \tag{4.3}\\
& \mathbf{W} \equiv \frac{1}{y^{\nu} \rho^{2} v}\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{T}}\right) \frac{\partial \mu_{z}}{\partial y}-\frac{\partial \mathbf{Q}}{\partial \dot{y}}-\frac{\mu_{s}}{\rho}\left(\rho-\frac{\rho_{T} h}{h_{T}}\right) \frac{\partial p}{\partial y}+ \\
& +\frac{\left(\mathbf{Q} \cdot \omega_{T}\right) \mathbf{h}}{v h_{T}}-\left(\mathbf{Q}^{*} \cdot \omega\right)_{\mathbf{q}} v^{-1}=0 \tag{4,4}
\end{align*}
$$

The system of Equations (4.1) to (4.4) is'cf the same type as the system of flow equations. It is elliptical for $w<c$ and hyperbolic for $w>c$. For $w>0$ there are three families of real characteristics, which coincide with characteristics of Equations (1.1) to (1.7). Along the streamine Equations (4.3) and (4.4) are satisfied, along Mach lines

$$
\begin{gather*}
d \mu_{1} \pm \frac{\sqrt{w^{2}-c^{2}}}{y^{v} \rho v^{2} c_{c}} d \mu_{2}+\left\{\mu_{3} \rho \omega\left(\rho-\frac{\rho_{T} h}{h_{T}}\right)-\mathbf{Q} \omega_{T} h_{T}^{-1}+\right. \\
\left.\quad+\mathbf{Q}\left(\omega_{p}-\frac{\omega_{T} h_{p}}{i_{T}}\right) \rho\right\} \frac{d \psi}{y^{\prime} \rho v}+\frac{Q \omega}{v^{2}} d x=0 \tag{4.5}
\end{gather*}
$$

where the upper sign corresponds to characteristics of the first family.
We obtain boundary conditions along the characteristic do and the contour $a b$.

By equating coefficients in front of $\delta u, \delta v$ and δQ along $d b$ to 0 we obtain

$$
\begin{gather*}
\mu_{1} t \frac{\sqrt{w^{2}-c^{2}}}{y^{v} \rho v^{2} c} \mu_{2}-0 \tag{4.6}\\
\mu_{1}+\mu_{2}\left(\varepsilon u y^{-v}-\frac{d y}{d \psi}\right) v^{-1}+\mu_{3} \rho u=0 \tag{4.7}\\
\mu_{2}\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{T}}\right)-\mathbf{Q} y^{\nu} \rho^{2} v=0 \tag{4.8}
\end{gather*}
$$

If not especially mentionea, here and below the upper signs refer to the external problem (Fig.1) and the lower signs to the internal problem (Fig.2); $d y / a *$ along $d b$ is determined from (1.10). Satisfaction of (4.6) and (4.7) along $d b$ leads also to a transformation to zero for the coefficient of v^{3} by virtue of $(1,10)$. We find the boundary condition for $a b$ by examining coefficients of U^{2}, U^{2}, U^{a}, U. Along $a b$ we determine multipliers a, B, y and μ_{1}, from Equations $U^{1}=0, U^{s}=0, U^{0}=0, U=0$, which by taking into consideration equations for J^{1} and U can be presented in the form

$$
\begin{align*}
& -\mathrm{U} \equiv \boldsymbol{\gamma}^{\prime}-\Phi_{\mathrm{q}}+\frac{\Phi_{T} \mathbf{h}}{h_{T}}+\frac{\alpha}{\rho}\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{T}}\right) p^{\prime}+\frac{1}{v}(\boldsymbol{\gamma} \cdot \omega)_{\mathbf{q}}-\frac{\left(\gamma \cdot \omega_{T}\right) \mathbf{h}}{h_{T} v}=0 \\
& -\frac{u}{v} U^{1}-U^{2} \equiv \frac{w^{2}}{v}(\alpha \rho)^{\prime}-\Phi_{v}+ \tag{4.9}\\
& +\frac{w^{2}}{h_{T} v}\left(\Phi_{T}-\alpha \rho_{T} p^{-1} p^{\prime}-\gamma \omega_{T} v^{-1}\right)-\gamma \omega v^{-2}=0 \tag{4.10}\\
& U^{3}= \pm y^{\nu} \mu_{1}+\Phi_{p}-\frac{v \Phi_{v}}{\rho w^{2}}+\frac{\Phi_{T}}{h_{T}}\left(\frac{1}{\rho}-h_{p}\right)+\frac{\alpha \omega}{\rho v}\left(\rho-\frac{\rho_{T} \mathbf{h}}{\dot{n}_{T}}\right)- \\
& -\frac{\boldsymbol{\gamma}}{v}\left\{\frac{\omega}{\rho \omega^{2}}+\omega_{p}+\frac{\omega_{T}}{h_{T}}\left(\frac{1}{\rho}-h_{p}\right)\right\}=0 \tag{4.11}\\
& u U^{2}-v U^{1} \equiv u \Phi_{v}+\gamma \omega u v^{-2}+\frac{w^{2}}{v^{2}}\left(\beta \pm \mu_{2}\right)=0 \tag{4.12}\\
& \Phi_{v}=(\partial \Phi / \partial v)_{y, x, p, T, q, x^{\prime}, \lambda,} \quad \Phi_{p}=(\partial \Phi / \partial p)_{y, x, v, T, \mathbf{q}, x^{\prime}, \lambda} \\
& \Phi_{T}=(\partial \Phi / \partial T)_{y, x, v, p, \mathbf{q}, x^{\prime}, \lambda} \quad \Phi_{q_{i}}=\left(\partial \Phi / \partial q_{i}\right)_{y, x, v, p, T, q_{j} \neq q_{i}, x^{\prime}, \lambda}
\end{align*}
$$

Here U^{3} is transformed by taking into account (4.10). As initial conditions for integration of (4.9) and (4.10) we take

$$
\begin{equation*}
\alpha_{b}=0, \quad \gamma=0 \tag{4.13}
\end{equation*}
$$

Therefore, for any smooth contour $a b$, multipiters $\alpha, \beta, \gamma, \mu_{1}, \mu_{2}, \mu_{3}$ and Q can be selected such that coefficients of $U^{1}, V^{1}, W^{1}(t=1,2,3) U$, $\mathbf{V}, W, \alpha_{b}, \gamma_{0}$ in Equation (3.1) are transformed to 0 . Actually, it is required for this that relationships (4.1) to (4.13) are fulfilled. For any contour $a b$, the flow in $a_{c} b$ can be calculated, for example, by the method of characteristics and consequently is known. For known flow parameters, α and Y along $a b$ are determined by Equations (4.9) and (4.10) and conditions (4.13). Subsequently μ_{1}, in particular μ_{1}, is found along $a b$ from (4.11), and from (4.5) to (4.8) 'with utilization of μ_{10}, the values $\mu_{1}, \mu_{2}, \mu_{3}$ and Q are determined along $d b$. Values of these quantities along the characteristic αb, and μ_{1} alone the contour $a b$ with the ald of Equations (4.1) to (4.4) or of equivalent Equations (4.3) to (4.5) permit to find $\mu_{1}, \mu_{2}, \mu_{3}$, and Q in the region $O_{\text {. Finally, the multiplier }} \quad$ along $a b$ is determined by Equation (4.12). It is clear that the Lagrange multiplier:s found in this fashion are dependent on the shape of the contour $a b$.
5. If $a b$ contains a discontinuity (Fig.3), then it is not possible to satisfy all obtained conditions with Lagrange's multipliers which are continuous in G. Actualiy, $\mu_{1}, \mu_{2}, \mu_{3}$, and Q along characteristic ine are
found from conditions along $k b$ and $d b$. Found in this fashion, the value $\mu_{1 \times}$ to the left of the discontinuity will not satisfy Equation (4.11) in the general case. Consequently, it is necessary to admit the possibility of lines of discontinuity in Lagrange's multipliers for continuous parameters of flow.

Let 1 be such a line. In the variation of I the region G is divided into regions of continuous Lagrange's multipliers. In these regions and along the boundaries $a b$ and $d b$ the functions $\mu_{1}, \mu_{2}, \mu_{3}$ and Q are determined in the previous fashion, i.e. Equations (4.1) to (4.13) are satisfied. Let $[\varphi]$ be a jump φ along 1 . Since the flow parameters and their variations are continuous along 1 , there appears an additional integral in Expression (3.1)

$$
\int_{i}\left(S^{1} \delta u+S^{2} \delta v+S^{3} \delta p+\mathrm{S} \frac{d \psi}{d y} \delta \mathbf{q}\right) d y
$$

where S^{2}, S^{e}, S^{s}, S are linear orthogonal functions of $\left[\mu_{1}\right],\left[\mu_{2}\right],\left[\mu_{3}\right]$ and [Q], which also depend on flow parameters and $d \psi / d y$ along 1 . We will determine $\left[\mu_{1}\right],\left[\mu_{2}\right],\left[\mu_{3}\right]$ and $[Q]$ such that the following conditions are fulfilled along 1

$$
\begin{equation*}
S^{1}=0, \quad S^{2}=0, \quad S^{3}=0, \quad \mathrm{~S} \frac{d \Psi}{d y}=0 \tag{5.1}
\end{equation*}
$$

If l is not a streamline and not a characteristic, this gives $(n+3)$ linearly independent linear homogeneous equations with respect to $(n+3)$ variables $\left[\mu_{1}\right],\left[\mu_{2}\right],\left[\mu_{3}\right],[Q]$. Consequently, in this case we have

$$
\left[\mu_{1}\right]=\left[\mu_{2}\right]=\left[\mu_{3}\right]=0, \quad[Q]=0
$$

Fig. 3
i.e. the discontinuity is not present.

If 1 is a characteristic, then s^{3} is a linear combination of S^{1} and S^{*} and conditions (5.1) give

$$
\begin{equation*}
\left[\mu_{1}\right] \mp\left[\mu_{2}\right] \frac{\sqrt{w^{2}}-c^{2}}{y^{v} \rho v^{2} c}=0 \tag{5.2}
\end{equation*}
$$

$$
\begin{gather*}
{\left[\mu_{1}\right]+\left[\mu_{v}\right]\left(\varepsilon u y^{-\nu}-\frac{d y}{d \psi}\right) v^{-1}+\left[\mu_{3}\right] \rho u=0} \tag{5.3}\\
{\left[\mu_{2}\right]\left(\rho-\frac{\rho_{T} h}{h_{T}}\right)-[Q] y^{\nu} \rho^{2} v=0} \tag{5.4}
\end{gather*}
$$

Furthermore, since (4.5) is satisfied from each side of the characteristic, then

$$
\begin{gather*}
d\left[\mu_{1}\right] \pm \frac{\sqrt{w^{2}-c^{2}}}{3^{\prime} \rho v^{2}} d\left[\mu_{2}\right]+\left\{\left[\mu_{3}\right] \rho \omega\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{F}}\right)-[\mathbf{Q}] \omega_{T} h_{\mathrm{T}}^{-1}-\right. \\
\left.-[Q]\left(\omega_{p}-\frac{\omega_{T} h_{p}}{h_{\mathrm{T}}}\right) \rho\right\} \frac{d \Psi}{y^{v} \rho v}+[Q] \omega v^{-2} d x=0 \tag{5.5}
\end{gather*}
$$

Here and in (5.2) the upper sign corresponds to a characteristic of the first family; $d y / d \psi$ in (5.3) is determined from (1.10). Equations (5.2) to (5.5) determine the jump in all quantities along a given characteristic
from the jump in one of these quantities at some point. By virtue of linearity and homogeneity of (5.2) to (5.5), all Lagrange multipliers are either continuous or discontinuous along the entire characteristic.

If I is a streamline, then $d \psi / d y=0$ and in addition to this s^{s} is a Inear combination of S^{1} and S^{2}. As a result we obtain

$$
\begin{equation*}
\left[\mu_{1}\right]=\left[\mu_{2}\right]=0 \tag{5.6}
\end{equation*}
$$

From this condition and Equations (4.3) and (4.4)

$$
\begin{align*}
& \frac{\partial\left[\mu_{3}\right]}{\partial y}+\left[\mu_{3}\right]\left\{\left(\frac{1}{\rho c^{2}}-\varepsilon\right) \frac{\partial p}{\partial y}+\left(\rho-\frac{\rho_{T} h^{\prime}}{h_{T}}\right) \frac{\omega}{\rho v}\right\}-\frac{[Q]}{\rho v}\left(\frac{\omega}{w^{2}}+\frac{\omega_{T}}{h_{T}}\right)=0 \tag{5.7}\\
& \frac{\partial[Q]}{\partial y}+\frac{\left[\mu_{3}\right]}{\rho}\left(\rho-\frac{\rho_{T} \mathbf{h}}{h_{T}}\right) \frac{\partial p}{\partial y}-\left([\mathrm{Q}] \cdot \omega_{T}\right) \frac{\mathbf{h}}{v h_{T}}+([\mathrm{Q}] \cdot \omega)_{\mathrm{q}} v^{-1}=0 \tag{5.8}
\end{align*}
$$

These equations are also linear and homogeneous, consequently, if only at one point of the streamline, $\left[\mu_{3}\right]=0$ and $[Q]=0$, then these conditions are fulfilled along the entire streamline.

Thus the introduction of discontinuities permits to satisfy all conditions of the previous section. In particular, in the case shown in Fig. 3 the line of discontinuity will be the characteristic ke.

Continuity in flow parameters was assumed above. Discontinuities in flow parameters, for example shock waves, will also be discontinuities in Lagrange's multipliers. When relationships are obtained at such discontinuities, it is necessary to take into account the relationship between the variation of flow parameters from different sides of the discontinuity.
6. In accordance with the choice of Lagrange's multipliers the expression for δx becomes

$$
\begin{align*}
\delta \chi=\delta i= & {\left[\Phi_{-}-F_{+}-\left(\Phi_{x^{\prime}}+\beta\right)_{-} x_{-}^{\prime}\right]_{b} \Delta y_{b}+\left(\Phi_{x_{-}^{\prime}}+\beta_{-}-F_{x_{+}^{\prime}}\right)_{b} \Delta x_{b}+} \\
& +F_{\mathrm{g}} \Delta y_{g}+\int_{a}^{b} U^{\circ} \delta x d y+\int_{b}^{g}\left\{F_{x}-\left(F_{x^{\prime}}\right)^{\prime}\right\} \delta x d y \tag{6.1}
\end{align*}
$$

where; in contrast to (3.1), all variations are independent.
In the region of a two-sided extremum $a b$ the variations in x are arbitrary, consequently the necessary condition for an extremum has the form

$$
\begin{equation*}
U^{\mathrm{o}}=\Phi_{x}-\left(\beta+\Phi_{x^{\prime}}\right)=0 \quad\left(\Phi_{x}=(\partial \Phi / \partial x)_{y, v, p, T, q}, x^{\prime}, \lambda\right) \tag{6.2}
\end{equation*}
$$

For an arbitrary length there is no end, and in Expression (6.1) only two first terms remain, and these are without F_{+}and $F_{x^{\prime}+}$. Since Δx_{0} is arbitrary, the length of the contour is determined by condition

$$
\begin{equation*}
\left(\Phi_{x^{\prime}}+\beta\right)_{b_{-}}=0 \tag{6.3}
\end{equation*}
$$

while the ordinate $y_{t}=y_{t}$ is aither given or is found from condition

$$
\begin{equation*}
\left\{\Phi-\left(\mathbf{\Phi}_{x^{\prime}}+\beta\right) x^{\prime}\right\}_{b_{-}}=0 \tag{6.4}
\end{equation*}
$$

For a limited length the end may also be absent. The ordinate y_{0} as before is either given or determined from (6.4). In the first case $\Delta y_{b} \geqslant 0$ are admissible (the upper sign refers to the external problem) and the necessary condition for a minimum of drag or a minimum of thrust will be

$$
\begin{equation*}
\left\{\Phi_{-}-F_{+}-\left(\Phi_{x^{\prime}}+\beta\right)_{-} x_{-}^{\prime}\right\}_{n} \geqslant 0 \tag{6.5}
\end{equation*}
$$

If an end is present, y_{b} is found from condition (6.5) with the equal sign. Then the transverse dimension is undefined, the ordinate y_{s} is determined from

$$
\begin{equation*}
F_{g}=0 \tag{6.6}
\end{equation*}
$$

Furthermore, in this case Δx_{b} and $b x$ are negative along $b g$. Consequentily, the necessary conditions for an outer extremum will be

Fig. 4

$$
\begin{align*}
& \left(\mathbf{\Phi}_{x^{\prime}-}+\beta_{-}-F_{x^{\prime}+}\right)_{b} \leq 0 \tag{6.7}\\
& F_{x}-\left(F_{x^{\prime}}\right)^{\prime} \geqslant 0 \quad \text { al ong } b y \tag{6.8}
\end{align*}
$$

The equations obtained constituce a system of necessary conditions which determine the shape of the optimum contour. Freedom of the choice of characteristic ad permits the construction of a contour of the required length. The selection of Lagrange's constant multipliers satisfies conditions (2.1).

Equations (4.6) to (4.8), (4.11) and (4.12) written at point b, and conditions (4.13) allow to express $\mu_{1 b}, \mu_{3 b}, \mu_{3 b}, \theta_{b}^{\prime}$ and β_{b} through flow parameters y and x at b. in particular

$$
\beta_{b}=\left(\mp \frac{p v^{2} c}{\sqrt{w^{2}-c^{2}}}\left\{\Phi_{p}-\frac{v \Phi_{v}}{\rho w^{2}}+\frac{\Phi_{T}}{h_{T}}\left(\frac{1}{\rho}-h_{p}\right)\right\}-\frac{u v^{2}}{w^{2}} \Phi_{v}\right)_{b}
$$

Substitutions of this expression into (6.3) to (6.5) and (6.7) leads to relationships which for the optimum contour must be satisfied in b by flow parameters y and x. For example, in the absence of isoperimetric conditions, (6.5) yields the Busemann condition [1]. The presence of irreversible processes is reflected on these relationships through the form of derivatives with respect to p and T. The same relationships can be obtained in a different way if one takes into account that for the optimum contour the end element of the contour $a b$ and the end are also optimum.
7. If in the vicinity of a the following limitation is imposed on $x^{\prime \prime}$

$$
\begin{equation*}
\left|x^{\prime \prime}\right| \leqslant K(y) \tag{7.1}
\end{equation*}
$$

where $K(y)$ is a given function, then instead of a discontinuity in a. there is a region of outside extremum $a a^{\circ}$

$$
\begin{equation*}
x^{\prime \prime}= \pm K(y) \operatorname{sign} x \tag{7.2}
\end{equation*}
$$

which smoothly foins with the regicn of two-sided extremum $a^{\circ} b$. Now (Fig. 4 and 5) the variations of parameters can be different from zero in the en-

Fig. 5 tire region G. Therefore we will require that Equations(4.1) to (4.5) be satisfied also in the entire region G, and Equations (4.6) to (4.8) be satisfied along the entire characteristic ob. However, the necessary condition for two-sided extremum (6.2) is now satisfied only along $a^{\circ} b$. Other relationships are satisfied without change.

> As a result we obtain

$$
\delta \chi=\int_{a}^{a^{\circ}} U^{\circ} \delta x d y
$$

Let us vary $x^{\prime \prime}$ only in the region $m n$ to the right of the point m on $a a^{\circ}$, and let $\max \left|8 x^{\prime \prime}\right|$ and $\left|y_{n}-y_{n}\right|$ be small of the same order of magnitude. With an accuracy to quantities of higher order

$$
\delta \chi=\left(\int_{m}^{a^{\bullet}}\left(y-y_{m}\right) U^{\circ} d y\right) \int_{m}^{n} \delta x^{\prime \prime} d y
$$

According to (7.1) and (7.2) for admissible $\delta x^{\prime \prime}$

$$
\int_{m}^{n} \delta x^{\prime \prime} d y \lessgtr 0
$$

Consequently, the condition that $a a^{\circ}$ is a region of outer extremum has the form

$$
\begin{equation*}
\int_{m}^{a^{\circ}}\left(y-y_{m}\right) U^{\circ} d y \leqslant 0 \tag{7.3}
\end{equation*}
$$

for any point m along $a a^{\circ}$. We note that a sufficient condition for fulfillment of this inequality will be

$$
\begin{equation*}
U^{\circ} \equiv \Phi_{x}-\left(\Phi_{x^{\prime}}+\beta\right)^{\prime} \leqslant 0 \quad \text { along } a a^{\circ} \tag{7.4}
\end{equation*}
$$

8. Conditions determining the optimum contour for equilibrium and frozen flows are obtained from relationships found above by taking into account that in these cases parameters $\&$ which vary according to Equations (1.7), are absent. Therefore, in order to obtain the mentioned conditions it is sufficient to omit Equations (4.7) and (4.9) and terms which contain $p, \boldsymbol{h}, \boldsymbol{w}$, Q and γ in the other equations. Furthermore, the necessity for equations containing μ_{3} and α disappears because it turns out that in this case μ_{1}, μ_{2}, β and the shape of the contour are independent of μ_{3} and α.

For the solution of the problen now the following equations and conditions are used: Equation (1.3), (1.5) and (1.7) to (1.10)

$$
\begin{gather*}
u^{2} d \frac{v}{u} \pm \frac{\sqrt{w^{2}-c^{2}}}{\rho c} d p+\frac{v v}{y^{v+1} \rho} d \psi=0 \tag{8.1}\\
d \mu_{1} \pm \frac{\sqrt{w^{3}-c^{2}}}{y^{v} \rho v^{2} c} d \mu_{2}=0 \tag{8.2}
\end{gather*}
$$

where the upper sign refers to characteristics of the first family in the flow field; condition (4.6) applies along the closing characteristic and Equations

$$
\begin{gather*}
\pm y^{\nu} \mu_{1}+\Phi_{p}-\frac{v \Phi_{v}}{\rho w^{2}}+\frac{\Phi_{T}}{h_{T}}\left(\frac{1}{\rho}-h_{p}\right)=0 \tag{8.3}\\
u \Phi_{v}+\frac{w^{2}}{v^{2}}\left(\beta \pm \mu_{2}\right)=0 \tag{8.4}
\end{gather*}
$$

and (1.4) apply along $a b$. Equations (6.2) in the region of two-sided extremum, (6.3) to (6.5) and (6.7) in point b, (6.6) in point g, (6.8) along bg, and (7.2) to (7.4) along $a a^{\circ}$, remain unchanged. Furthermore,

$$
\rho=\rho(p, T, \psi), \quad h=h(p, T, \psi)
$$

The conditions at discontinuities can also be obtained without difficulty.
Further simplifications depend on the form of isoperimetric conditions. If p, T and v do not appear in them, then along $a b$

$$
\begin{equation*}
\mu_{1}=\mp 1, \quad \mu_{2}=\mp \beta \tag{8.5}
\end{equation*}
$$

In the absence of isoperimetric conditions we obtain from (6.2)

$$
\begin{equation*}
\beta=\beta_{b}=\text { const } \tag{8.6}
\end{equation*}
$$

Since in this case [6] all streamlines in $a d b$ or in $a^{\circ} d b$ are extremals, then Equations (8.5) and (8.6) are satisfied everywhere in $a d b$ or $a^{\circ} d b$. From this it is easy to find solutions which were obtained by going to a control contour.

For two-dimensional flow the problem is substantially simplified if the parameters are constant along ac . Since in this case all characteristics of the same family have the same properties as ac, from (4.6) and (8.2) to (8.4) in the region of two-sided extremum we obtain,

$$
\begin{equation*}
\Phi_{x}-\left(\Phi_{x^{\prime}}-\frac{u v^{2}}{w^{2}} \Phi_{v} \mp\left\{\Phi_{p}-\frac{v \boldsymbol{\Phi}_{v}}{\rho w^{2}}+\frac{\Phi_{T}}{h_{T}}\left(\frac{1}{\rho}-h_{p}\right)\right\} \frac{\rho c v^{2}}{\sqrt{w^{2}-c^{2}}}\right)=0 \tag{8.7}
\end{equation*}
$$

This result is also obtained by conventional methods of variational calculus since for a given flow, parameters along $a b$ depend only on x^{\prime}. It is evident from (8.7) that if Φ is independent of x and y, the region of two-sided extremum is linear.

Derived conditions constitute a basis for construction of optimum contours with application of numerical methods. For application and verification these methods the simple solutions presented above can be used.

BIBLIOGRAPHY

1. Guderley, G. and Hantsch, E., Beste Formen fur achsensymmetrische Uberschallschubdusen. Zeitschrift fur Flugwissenschaften, 1955, H. 9,3, 305-313. Russian transl. In the Sborn. "Mekhanika", IL, № 4 (38), pp.53-69, 1956.
2. Rao, G.V.R., Ezhaust nozzle contour for optimum thrust. Jet Propulsion, Vol. 28, № 6, 1958.
3. Sternin, L.E., K raschetu osesimmetrichnogo reaktivnogo sopla naimen' shego vesa (On calculations of axisymmetric thrust nozzie of minimum weight). Izv.Akad. Nauk SSSR, OTN, Mekh. i mashinostr., № l, 1959.
4. Guderley, G., On Rao's method for the computation of exhaust nozzles. Zeitschrift fur Flugwissenschaften, H. 12, 7, 1959.
5. Rao, G.V.R., Spike nozzle contour for optimum thrust. Planetary and Space Science, № 4, 92-101, 1961.
6. Shmyglevskii, Yu.D., Nekotorye variatsionnye zadachi gazovoi dinamiki (Some variational problems in gas dynamics). Trud.vych.tsentr., Akad. Nauk SSSR, 1963.
7. Borisov, V.M., Ob optimal'noi forme tel v sverkhzvukovom potoke gasa (On the optimum shape of bodies in a supersonic gas stream). Zh.vych. matem. 1 matem.fiz., Vol.3, № $4,1963$.
8. Shipilin, A.V., Oblast' razryvnykh reshenil variatsionnykh zadach gazovoi dinamiki (Region of discontimuous solutions of variational problems in gas dynamics). PMM Vol.27, № 2, 1963.
9. Kraiko, A.N., Varlatsionnye zadach1 sverkhzvukovykh techenil gaza s proizvol'nymi termodinamicheskimi svoistvami (Variational problems of supersonic gas flows with arbitrary thermodynamic properties). Trud. vych.tsentr., Akad.Nauk SSSR, 1963.
10. Nikol'skil, A.A., O telakh vrashchenila s potokom, obladaiushchikh naimen'sh1m volnovym soprotivleniem v sverkhzvukovom potoke (On bodies of revolution with through flow which have the minimum wave drag in a supersonic stream). Sb.teoret.rabot po aerodinamike, Oborongiz, 1957.
11. Guderley, K.G. and Armitage, J.V., A general method for the determination of best supersonic rocket nozzles. Paper presented at the Symposium on external problems in aerodynamics. Boeing Scientific Research Laboratories, Flight Science Laboratory, Seattle, Washington, December 3-4, 1962. Russian transl. In the Sborn. "Mekhanika", IL, No 6, pp.85101, 1963.
12. Sirazetdinov, T.K., Optimal'nye zadachi gazodinamiki (Optimum problems of gas dynamics). Izv.vyssh.uchebn.zaved., Aviatsionnaia tekhika, № 2,1963 .
